首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20706篇
  免费   1512篇
  国内免费   856篇
电工技术   561篇
综合类   1218篇
化学工业   6107篇
金属工艺   2551篇
机械仪表   617篇
建筑科学   1051篇
矿业工程   717篇
能源动力   266篇
轻工业   2474篇
水利工程   114篇
石油天然气   283篇
武器工业   282篇
无线电   706篇
一般工业技术   3065篇
冶金工业   2862篇
原子能技术   112篇
自动化技术   88篇
  2024年   49篇
  2023年   354篇
  2022年   527篇
  2021年   628篇
  2020年   624篇
  2019年   511篇
  2018年   526篇
  2017年   638篇
  2016年   582篇
  2015年   606篇
  2014年   886篇
  2013年   970篇
  2012年   1184篇
  2011年   1330篇
  2010年   1043篇
  2009年   997篇
  2008年   885篇
  2007年   1407篇
  2006年   1353篇
  2005年   1246篇
  2004年   1104篇
  2003年   951篇
  2002年   849篇
  2001年   717篇
  2000年   620篇
  1999年   449篇
  1998年   411篇
  1997年   316篇
  1996年   273篇
  1995年   222篇
  1994年   228篇
  1993年   145篇
  1992年   131篇
  1991年   69篇
  1990年   84篇
  1989年   85篇
  1988年   18篇
  1987年   11篇
  1986年   7篇
  1985年   5篇
  1984年   6篇
  1983年   2篇
  1982年   5篇
  1981年   11篇
  1980年   6篇
  1979年   1篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The micro-powder injection molding (micro-PIM) process has the potential to bridge the gap between the design and manufacturing of micro-components that are often used in small and handy devices. Numerical modeling helps to analyze and overcome various difficulties of micro-PIM. In the present work, a numerical model is developed to predict the powder–binder separation (a common defect in PIM and especially severe in micro-PIM) during the injection of an alumina feedstock. A powder–binder separation criterion is proposed dealing with applied injection pressure and friction force between the powder and binder. An indirect comparison of feedstock travel time between two locations is used to validate the model. The predicted segregation from the simulated result is supported by a qualitative experimental measurement. The developed model can be used to optimize injection parameters to get a defect-free product.  相似文献   
2.
MgB2 superconductor pellets were synthesized through Mg gas infiltration method using nanosized- and microsized B powders. There was a marked difference in the superconducting properties of the two samples, particularly in the pinning force and dominant pinning mechanism. The microstructures of the samples were observed using HR-TEM and STEM-HAADF, and the results showed that the primary reason for the difference in the superconducting properties is the distribution of the nanosized second-phase particle MgO. Additionally, a feasible reaction model for the Mg gas infiltration method was established. Compared to the Mg liquid infiltration method, the gas infiltration showed better penetrability ability with a small amount of residual Mg. This study presents a novel synthesis process to fabricate an MgB2 pellet with superior density and superconducting properties. This method can be used in multiple applications such as superconducting bearings, compact superconductor magnets, and magnetic shielding.  相似文献   
3.
《Ceramics International》2022,48(24):36620-36628
In order to solve the problem of low charging and discharging energy density of dielectric capacitors, the structure design of layered polymer matrix composites is carried out in this paper. Ba0.7Sr0.3TiO3, Ba0.8Sr0.2TiO3 and Ba0.9Sr0.1TiO3 nanoparticles were successfully prepared by the oxalate coprecipitation method. The surface of BaxSr1-xTiO3 was successfully coated with dopamine, which promoted the dispersion of the polymer matrix of the ceramic powder. Monolayer BaxSr1-xTiO3/PVDF composites containing BaxSr1-xTiO3 with different Ba/Sr ratios were successfully prepared by the casting method. Three-layer asymmetric composites with different fillers were successfully prepared by layer-by-layer casting. The phase and microstructure of the as-prepared materials were analyzed by XRD and SEM. The dielectric, electrical conductivity, ferroelectric and energy storage properties of the composites were tested. The effects and laws of the design of the three-layer asymmetric structure on the dielectric properties and energy storage properties of the layered composites are mainly studied. When the structure of the three-layer asymmetric composite is 1-2-3, the breakdown field strength reaches 330 kV/mm, the discharge energy density reaches 8.51 J/cm3, and the charge-discharge efficiency is 67%. This work demonstrates that layered composites with asymmetric properties can facilitate the development of electrical energy storage.  相似文献   
4.
One of the main challenges in the laser powder bed fusion (LPBF) process is making dense and defect-free components. These porosity defects are dependent upon the melt pool geometry and the processing conditions. Power-velocity (PV) processing maps can aid in visualizing the effects of LPBF processing variables and mapping different defect regimes such as lack-of-fusion, under-melting, balling, and keyholing. This work presents an assessment of existing analytical equations and models that provide an estimate of the melt pool geometry as a function of material properties. The melt pool equations are then combined with defect criteria to provide a quick approximation of the PV processing maps for a variety of materials. Finally, the predictions of these processing maps are compared with experimental data from the literature. The predictive processing maps can be computed quickly and can be coupled with dimensionless numbers and high-throughput (HT) experiments for validation. The present work provides a boundary framework for designing the optimal processing parameters for new metals and alloys based on existing analytical solutions.  相似文献   
5.
《Soils and Foundations》2022,62(5):101206
Coral sand is one kind of the important building materials in coral reef engineering practice. The use of cement as a stabilizing agent can significantly improve the mechanical properties of coral sands and is widely applied in the subbase engineering construction in coral reef islands. Cement-stabilized coral sand structures may contain high contents of fine coral particles and salinity because of the high crushability of coral sands and the existence of seawater surrounding them. In this study, the effects of coral sand powders and seawater salinity on the dynamic mechanical properties of cemented coral sand (CCS) were investigated through the split Hopkinson pressure bar (SHPB) tests and Scanning Electron Microscope (SEM) analysis. It was found that the strength (i.e., the peak stress) of CCS specimens increased firstly and then decreased with the increase of powder content. The specimens reached the maximum peak stress when 3% powder content was included. The initial improvement of CCS strength was attributed to the pore-filling effect of coral powders, namely, the micro pores of the CCS specimens could be more effectively filled with higher percentages of coral powders being used in the experiments. However, excessive coral powders resulted in the reduction of specimen strength because these powders could easily be cemented into agglomerates by absorbing water from the specimens. These agglomerates could reduce the cementation strength between the coarse coral particles and the cement. Meanwhile, the peak stress of CCS specimens was found to be negatively correlated with the average strain rate and the ultimate strain. The degree of specimen fracture was found to be correlated with the amount of specific energy absorption during the tests. Furthermore, the “sulfate attack” caused by the inclusion of salinity of water had different influences on the CCS specimens with different coral powder contents. The ettringite and gypsum produced in “sulfate attack” could fill the pores and lead to cracking of the specimens, significantly affecting the specimen strength.  相似文献   
6.
《Ceramics International》2022,48(9):11988-11997
We have studied peculiarities in the formation of single-crystalline barium titanate (BaTiO3) nanorods from a glycolate-mediated complex via a single-step hydrothermal process under different supersaturation (SR) conditions. X-ray diffraction (XRD) showed the formation of pure BaTiO3 with an SR of above 19. The tetragonality for the BaTiO3 (c/a) reached 1.013 at SR = 19–29 and dropped to 1.010 for SR = 39. According to the transmission electron microscopy (TEM) and XRD analyses, the rod-shaped particles exhibited single crystallinity and crystal growth along the [001] plane. With scanning electron microscopy (SEM), the morphological evolution from a plate-shaped intermediate precursor (SR = 6–9) to a rod-shaped product with an aspect ratio of 6–9 (SR = 19–29), and to non-polar material with an irregular structure (SR = 39), was observed. The negative slope, linear dependence of the particles’ width and length on the supersaturation level in the range SR = 19–39 was established for the first time. The replacement of the prevailing crystallization mechanism from in-situ topotactic transformation into dissolution-precipitation above SR = 19 was observed. It was shown that with a simple regulation of the SR, the structural and morphological characteristics of the obtained BaTiO3 nanoparticle can be effectively tuned.  相似文献   
7.
《Ceramics International》2022,48(17):24906-24914
Synthesis of materials in Ni/SrTiO3 system was undertaken. Perovskite structure material with nominal composition SrTi0.98O3 was synthesised by the sol-gel method. Nickel was introduced into the system by the wet impregnation method followed by proper thermal treatment. Two research paths were carried out: the evaluation of sintering conditions on material properties (sintering temperature: 1100, 1200, 1300 and 1400 °C; sintering time: 1, 3 and 5 h for sintering at 1300 °C) and the effect of nickel addition on the material properties - 1, 2, and 5 mol% of Ni compared to the amount of Ti was introduced into the analysed system. The microstructures of the materials, together with their structural (XRD analysis) and electrical (total conductivity and Seebeck coefficient) properties, were determined. Furthermore, temperature-programmed reduction (TPR) and temperature-programmed oxidation (TPOx) measurements were performed to evaluate the materials’ redox properties. It was shown that less than 1 mol% of Ni could be incorporated into the strontium titanate structure when a wet impregnation was chosen as the method for the introduction of Ni into the SrTiO3-based system. NiO and, for the highest amount of introduced nickel, also NiTiO3 were the main additional nickel-containing phases. For all materials synthesised in the Ni/SrTiO3 system, the positive value of the Seebeck coefficient was observed, suggesting that nickel is an acceptor-type dopant while incorporated into the perovskite structure. However, the TPR measurements clearly imply that nickel can be incorporated into the strontium titanate structure in various oxidation states.  相似文献   
8.
《Ceramics International》2022,48(13):18925-18932
The dielectric properties of a novel polymer dielectric material were investigated. The conductive phase of RuO2 was synthesized for deposition on the surface of a nanosized BaTiO3 (nBT). The RuO2@nBT hybrid particles were incorporated into a poly (vinylidene fluoride) (PVDF) as a three-phase composite (RuO2@nBT/PVDF). The obtained dielectric constant (ε′) was significantly high (3837.16) for the composite with a volume fraction of fRuO2@nBT = 0.50. The large interfacial polarization between the RuO2?nBT and RuO2?PVDF interfaces considerably increased the value of ε′. Therefore, interfacial polarization is a critical factor in improving the dielectric properties. The dielectric behavior of the RuO2@nBT/PVDF composites can be described using the effective medium percolation theory model, which indicates the significant contributions of the conductive RuO2 phase and high-permittivity nBT phase.  相似文献   
9.
《Ceramics International》2022,48(7):9527-9533
In this work, a magnetodielectric coupling observed in barium titanate–cobalt ferrite composites synthesized using high-energy ball milling assisted via a thermal treatment is discussed. Vibrating sample magnetometry and dielectric spectroscopy showed that multiferroic composites possess both ferromagnetic and dielectric behaviors inherited from the parent ferromagnetic cobalt ferrite and ferroelectric barium titanate phases. The magnetocapacitance (up to 35%) recorded for x = 0.3, (1-x)BaTiO3–xCoFe2O4, can be attributed to the spin-dependent filtering mechanism. The composite with the aforementioned composition exhibited a homogeneous matrix–particle composite microstructure, which was achieved via high-energy ball milling during the mixing stage.  相似文献   
10.
《Ceramics International》2022,48(10):14192-14200
In this study, mold powder slurries with high solid loading and low viscosity were prepared during the ball-milling process for improving the homogeneity and mechanical properties of granules after spray-drying. The effect of ball-milling parameters, such as solid loading, binder/dispersant content, and ball-milling time, on the flowability, dispersibility, stability, and rheological behavior of mold powder slurries was systematically investigated by rheology observation and sedimentation tests. As these parameters varied, the slurry exhibited the shear-thinning behavior of a non-Newtonian fluid with a shear rate range of 0–50 s?1, which was adequately described by the Herschel-Bulkley model. The optimal parameters that optimized the flowability, dispersibility, and stability of the slurry, along with its rheological behavior, were chosen as follows: solid loading, 60 wt%; modified sodium carboxymethyl cellulose binder content, 1.0 wt%; sodium tripolyphosphate dispersant content, 0.5 wt%; ball-milling time, 60 min.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号